
Adventure Works Photo Sharing
Application (Proposed)
Detailed Planning Document

2nd November 2012

Authors: Lola Jacobsen

Note: This file is an example solution for lab. It is not the only correct solution and your answers may
vary.

Introduction
The author has examined the initial investigation document by Hines, Raghav, and Khan. Based on
the use cases, technical requirements, and other content in that document, the author has created
the detailed plans below. The board has already agreed that the photo sharing application will be
built as a website based on Microsoft’s ASP.NET MVC technology. Therefore the details presented
here include the names and properties of model classes and controllers developers must create.
Views have also been identified and wireframe diagrams included to help envision the user interface
for important parts of the site.

The application design is likely to evolve throughout the development process as requirements
change. The development team will adopt Agile practices to ensure such changes are reflected in the
final product. Therefore this document should not be considered a complete definition of the final
application.

MVC Model
Developers will create a model with the following model classes. For each model class, properties
have been listed and descriptions given.

Table 1: MVC Model

Model Class Description Properties Data Types
Photo The photo model class represents a

photo that authenticated users can
upload to the website.

PhotoID Integer
Title String
PhotoFile Binary
Description String
CreatedDate Date
Owner String

Comment The comment model class represents a
comment that authenticated users can
add to photos. This enables users to
discuss others’ photos. Each comment
is associated with just one photo.

CommentID Integer
User String

Subject String
Body String
PhotoID Integer

MVC Controllers
Developers will create the following controllers. For each controller, actions have been listed and
descriptions given.

Table 2: MVC Controllers

Controller Action Description
PhotoController DisplayGallery

(GET)
The action runs when the user requests the photo
gallery page. The action obtains all the photos from
the database and passes them to the DisplayGallery
view.

DisplayRecent
(GET)

This action is similar to the DisplayGallery action
except that only the most recent photos are obtained
from the database. This smaller collection of photos is
passed to the DisplayGallery view.

DisplayPhoto
(GET)

This action runs when the user clicks a “Details” link
for a photo in a gallery. The action obtains full details
of a single photo from the database and passes it to
the DisplayPhoto view.

AddPhoto (GET) This action runs when the user clicks a “Add a Photo”
link. The action creates a new instance of the Photo
model class and passes it to the AddPhoto view.

AddPhoto (POST) This action runs when the user clicks “Save” in the
AddPhoto view. The action saves the file and details of
the new Photo to the database and redirects the user
to the DisplayGallery view.

DeletePhoto
(GET)

This action runs when the user clicks a “Delete this
Photo” link in the DisplayPhoto view. The action
displays the DeletePhoto view, which requests
confirmation for the deletion.

DeletePhoto
(POST)

This action runs when the user clicks “Delete” in the
DeletePhoto view. The action deletes the current
Photo, with its associate Comments, from the
database and redirects the user to the DisplayGallery
view.

CommentController DisplayComments
(GET)

This action runs when the DisplayPhoto view is
displayed. The action requires the current PhotoID as
a parameter and uses it to get all the comments for
the current Photo from the database. The action
returns the _DisplayComments partial view.

 AddComment
(GET)

This action runs when the user clicks the “Add a
Comment” link in the DisplayPhoto view. The action
creates a new instance of the Comment model class
and sets its PhotoID to be the ID of the current Photo.
It passes this new comment to the AddComment view.

 AddComment
(POST)

This action runs when the user clicks “Submit” in the
AddComment view. The action saves the details of the
new comment in the database and redirects the user
to the DisplayPhoto view.

MVC Views
Developers will create the following views. Each view has been listed together with the controller it is
associated with.

Table 3: MVC Views

Controller View Description
PhotoController DisplayGallery This view displays a collection of Photos at thumbnail

size. For each photo the Title, Owner, and Created
Date values are displayed.

DisplayPhoto This view displays a single Photo at full size. The Title
and Owner are displayed above the photo. The Photo
Description, Created Date, and other values are
displayed beneath the photo. Under these details, all
the Comments for the current Photo are listed, with
an “Add a Comment” link.

AddPhoto This view displays a form with which the user can
upload and describe a new Photo.

DeletePhoto This view displays a form with which the user can
confirm a Photo deletion. The view displays details of
the current Photo, such as its Title and Description.

CommentController DisplayComments This partial view, which is used on the DisplayPhoto
form, displays all the Comments associated with the
current Photo.

AddComment This view displays a form with which the user can
create a new comment for a specified Photo.

Hosting Recommendations
Since the photo sharing application will be developed in ASP.NET MVC, it must be hosted on a
Microsoft web server. The author recommends the following hosting configuration:

Web Server
The author recommends using Windows Azure to host the Photo Sharing application. Windows Azure
can host any ASP.NET website, including the MVC application proposed in this document. Scaling is
very simple because Microsoft, not Adventure Works, is responsible for adding server resources at
times of high traffic. Costs are minimal: they depend on the amount of data served to visitors but it is
not necessary to maintain our own hardware.

Database
The author recommends using SQL Database, within Windows Azure, to host the Photo Sharing
application underlying database. As for the web server, this recommendation ensures high-
availability hosting for the database with good value for money. This makes particular sense if the
web site is hosted in Windows Azure.

